

Desempenho acústico de esquadrias e vidros diante das exigências das normas e das condições de custos do mercado brasileiro –

Desempenho acústico de esquadrias de alumínio e a elaboração da ABNT NBR 10821

José Carlos Garcia Noronha – ABAL - Associação Brasileira de Alumínio / Belmetal

Fabiola Rago Beltrame – AFEAL - Associação Nacional de Fabricantes de Esquadrias de Alumínio

AFEAL – Associação Nacional de Fabricantes de Esquadrias de Alumínio

Associação composta por 130 empresas do setor de esquadrias de alumínio de todo o País

Fabricantes de esquadrias, fabricantes de componentes, fornecedores de perfis e sistemas de esquadrias, fornecedores de máquinas, fornecedores de selantes, de ACM e de tratamento superficial do alumínio

A nova versão da norma de esquadrias

ESQUADRIAS EXTERNAS PARA EDIFICAÇÕES

NBR 10821 – Revisão 2011

- Parte 1 Terminologia
- Parte 2 Classificação e desempenho
- Parte 3 Métodos de ensaio

Publicadas em 11/01/2011, Válidas a partir de 11/02/2011

A nova versão da norma de esquadrias

ESQUADRIAS EXTERNAS PARA EDIFICAÇÕES NBR 10821 - Revisão

- Parte 4 Requisitos de desempenhos adicionais atenuação acústica (em elaboração pela CE)
- Parte 5 Instalação e manutenção (texto finalizado pela CE, em análise pelo setor técnico)

A Comissão de estudos do CB-02 formada por fabricantes, consultores, consumidores e laboratórios, se reúne quinzenalmente as quartas—feiras pela manhã, na AFEAL

Atenuação acústica do conjunto e da esquadria

No final de 2010, a Comissão de Estudos de Esquadrias realizou uma série de ensaios em esquadrias comercializadas em lojas de materiais de construção de aço, alumínio e PVC, para complementar o estudo iniciado pelos sistemistas e obtendo valores de atenuação acústica das esquadrias e dos sistemas

Objetivo: elaboração da ABNT NBR 10821-4 e revisão da ABNT NBR 15575-4

Atenuação acústica do conjunto e da esquadria em laboratório

Metodologia: ISO 10140-2, laboratório Concremat - SP

Atenuação acústica do conjunto e da esquadria, em laboratório

Material	Tipologia	Vidro (mm)	Dimensão (mm)	Resultado do sistema (dB)	Resultado da esquadria (dB)	Atenuação do vidro (dB)*
Dry Wall	Parede	-	2500x4000	54 (-6;-14)	-	-
Aço padronizado	Maxim-ar	4	800x800	36 (-1; -3)	24 (-1;-3)	28
Aço padronizado	JVC 03 fls	4	1200x1200	24 (0; -1)	15 (0;-1)	28
Aço padronizado	JVC 06 fls	4	1000x1200	22 (-1; -1)	12 (0;0)	28
Aço padronizado	JC 04 fls	4	1000x1200	25 (0; 0)	16 (-1;-1)	28
Aço padronizado	JVC 06 fls	3	1000x1200	22 (0; -1)	13 (-1;-1)	26
Alumínio padronizado	JC 02 fls	3	1200x1200	32 (0; -1)	23 (-1;-1)	26
Alumínio padronizado	JVC 03 fls	3	1200x1200	25 (0; -1)	16 (0;-1)	26
Alumínio padronizado	JC 02 fls	6	1200x1200	30 (-1; 0)	21 (-1;0)	31
Alumínio padronizado	JC 02 fls	6	1200x1200	28 (-1; 0)	20 (-1;0)	31
Alumínio padronizado	JC 02 fls	3	1000x1200	28 (0; 0)	18 (0;-1)	26
Alumínio padronizado	Maxim-ar	4	800x800	39 (-1; -3)	27 (-1;-3)	28
Alumínio padronizado	JC 02 fls	3	1200x1200	25 (0; -1)	17 (-1;-1)	26

^{*} Informação teórica obtida de dados internacionais de fabricantes de vidros

Exemplo de cálculo da atenuação acústica do conjunto com base nos resultados das esquadrias e da parede, obtidos em laboratório

Considerando uma parede de dimensões (2,60x3,00)mm, com Rw = 40 dB

Material	Tipologia	Vidro [mm]	R_{w}	C_{tr}	$R_e = (R_w + C_{tr})$ (esquadria)	$D_{2m,nT,w}$ (fachada)
Aço padronizado	Maxim-ar	4	24	-3	21	28
Aço padronizado	JVC 03 fls	4	15	-1	14	21
Aço padronizado	JVC 06 fls	4	12	0	12	19
Aço padronizado	JC 04 fls	4	16	-1	15	22
Aço padronizado	JVC 06 fls	3	13	-1	12	19
Alumínio padronizado	JC 02 fls	3	23	-1	22	29
Alumínio padronizado	JVC 03 fls	3	16	-1	15	22
Alumínio padronizado	JC 02 fls	6	21	0	21	28
Alumínio padronizado	JC 02 fls	6	20	0	20	27
Alumínio padronizado	JC 02 fls	3	18	-1	17	24
Alumínio padronizado	Maxim-ar	4	27	-3	24	31
Alumínio padronizado	JC 02 fls	3	17	-1	16	23

Atenuação acústica do conjunto e da esquadria

Consultores de acústica nos informaram que os resultados obtidos praticamente nos ensaios de laboratório em composições de alvenarias e de esquadrias, também pode ser obtidos na teoria por fórmula matemática que leva em consideração:

- -Área total da parede;
- -Área da esquadria;
- -Atenuação acústica da parede, obtida em laboratório;
- -Atenuação acústica da esquadria, obtida em laboratório.

Atual ABNT NBR 10821-2 Tabela 2 – Níveis de desempenho das esquadrias quanto ao seu uso.

Ensaio	Desempenho				
Elisaio	Mínimo (M)	Intermediário (I)	Superior (S)		
Permeabilidade ao ar	Ver Figura B.1 ^a	Ver Figura B.1	Ver Figura B.1		
Estanqueidade à água	Passagem de água na face interna da esquadria, sem molhar o peitoril da alvenaria ou a face interna da parede, desde que ocorra o escoamento para a face externa. Ver Figura 1a, da ABNT NBR 10821-3 b	Presença de água restrita ao perfil inferior, com escoamento para o lado externo, sem molhar o peitoril ou a face interna da parede Não deve ocorrer escorrimento de água por nenhum elemento interno da esquadria. Ver Figura 1b, da ABNT NBR 10821-3	Sem presença de água no interior da esquadria, inclusive no marco inferior Ver Figura 1c, da ABNT NBR 10821-3		

As esquadrias qualificadas pelo PSQ Esquadrias de Alumínio do PBQP-H, atendem à esta norma e já apresentam sistemas de vedação

Ver site: www.cidades.gov.br/pbqp-h/

Proposta para a ABNT NBR 10821-4 Níveis de desempenho acústico das esquadrias

Ensaio de laboratório

Enocio	Nível de Desempenho			
Ensaio	Mínimo (M)	Intermediário (I)	Superior (S)	
Atenuação acústica Rw (dB)	Valores em discussão	Valores em discussão	Valores em discussão	

Escala evolutiva...

Daqui a cinco anos a atenuação acústica do nível mínimo será novamente avaliada e seus valores majorados.

Etiqueta de identificação das esquadrias

Produto: Janela de Correr 02 fls		Dimensão: Altura x Largura 1000x1200 mm		
CLASSIFICAÇÃO TÉCNICA DO PRODUTO (ABNT NBR 10821)		Região do País	Quant. Pav.	
NÍVEL DE DESEMPENHO		III	02	
RESISTÊNCIA À CORROSÃO	(Específica para esquadrias de aço) - CM			
ISOLAMENTO ACÚSTICO		АМ		

APLICAÇÃO:

- Edificação com até dois pavimentos (térreo mais um pavimento)

REGIÃO DE UTILIZAÇÃO:

Demarcar a região do mapa

- São Paulo Capital
- São Paulo Litoral
- Grande ABC
- Norte de Mato Grosso do Sul
- Sul de Mato Grosso e Goiás
- Norte de Amazonas e Roraima

RECOMENDAÇÕES:

- Este produto deve ser utilizado apenas em edificações com até dois pavimentos e altura máxima de 6 metros.
- Desempenho térmico e acústico mínimo.

CARACTERÍSTICAS TÉCNICAS DE ACORDO COM A ABNT NBR 10821:

Ensaio:	Resultados:
- Permeabilidade ao Ar:	Vazão obtida
- Estanqueidade à Água:	Mínimo 120 Pa
- Pressão de vento para o ensaio de deformação:	Mínimo 1000 Pa
- Resistência às operações de manuseio:	Atende
- Isolamento acústico	dB

Proposta para a ABNT NBR 10821-4 Níveis de desempenho acústico das esquadrias

Ensaio de laboratório

Alinhada com

Proposta de revisão ABNT NBR 15575-4

Ensaio de campo do sistema e

Ensaio de laboratório do sistema (Anexo informativo)

OBRIGADA PELA ATENÇAO!!!

CONTATOS

José Carlos Garcia Noronha ABAL

E-mail: jose.noronha@belmetal.com.br

Fabiola Rago Beltrame AFEAL

E-mail: fabiolarago@yahoo.com.br